山东考研

辅导咨询

热点推荐

您现在的位置:首页 > 考研 > 备考资料 > 数学 >

2020山东考研数学:线代知识的四大特点分析

2019-08-26 17:26:40|

山东中公教育小编为了方便大家更好的备战2020山东考研数学,特为大家带来:2020山东考研数学:线代知识的四大特点分析,希望大家能在平时多加温习,牢牢记住。预祝大家备考顺利!

数学?|?政治?|?英语|?专硕

一、内容抽象,尤其向量部分最为典型。在现实生活中,我们可以看到一维空间、二维空间甚至是三维空间,但是对于三维空间我们是难以想象的。向量主要研究的就是三维向量,所以这就需要较强的抽象思维和逻辑推理能力,这一点对于侧重于计算能力培养的工科学生来说是一个难点。因此在学习的过程中,对所涉及的基本概念应当先理解好它们的定义,在理解基础之上,才能深刻理解它们与其他概念的联系以及它们的作用,一步步达到运用自如的境地。

二、概念多,性质多,定义多,定理多。例如有关矩阵的,就有相似矩阵、合同矩阵、正定矩阵、正交矩阵、伴随矩阵等。在向量这部分,向量组线性相关的性质就10来个。

三、符号多,运算法则多,有些运算法则与以前的完全不同。正如《2012年全国硕士研究生入学统一考试数学考试大纲配套强化指导》第二篇线性代数部分所说的,对于数的运算我们满足交换律、结合律和消去律;但是矩阵的运算与之有相同的也有不同的,矩阵的运算不满足交换律和消去律,但是满足结合律。所以这些在复习的时候一定要注意区分。

四、内容纵横交错,前后联系紧密,环环相扣,相互渗透。

线性代数内容之间的联系是比较紧密的。相对高数来说,它们的联系又是非常隐蔽的。以可逆矩阵为例,阶矩阵是可逆的,从行列式的角度有其等价说法,就是阶矩阵的行列式不等于0;从矩阵的角度它的等价说法是矩阵的秩等于阶数,从向量的角度描述,就是矩阵的行向量组是线性无关的,同时列向量组也是线性无关的,并且任何一个三维列(行)向量都可以由该矩阵的列(行)向量组来线性表示;从特征值的角度描述,就是矩阵的特征值都是非零的。

因此在学习的过程中,对所涉及的概念、性质及定理要理解,同时很多东西还要靠记忆,尤其要注意基本概念、基本方法之间的相互关系,有些问题是相互交错,相互渗透,似螺旋上升,比如矩阵的秩与向量组的秩、线性方程组与向量组的线性组合、线性相关之间的关系。弄清这些关系,一方面可对所涉及的概念通过不断重复而达到加深印象的目的,另一方面也能对问题有进一步的深入理解。

相关推荐:2020山东考研数学:8种方法教你击破数学选择题

相关推荐:2020山东考研数学:各科目知识模块整理

?注:本站稿件未经许可不得转载,转载请保留出处及源文件地址。
(责任编辑:syq60938)

免责声明:本站所提供真题均来源于网友提供或网络搜集,由本站编辑整理,仅供个人研究、交流学习使用,不涉及商业盈利目的。如涉及版权问题,请联系本站管理员予以更改或删除。

微信公众号
微博二维码
咨询电话

400 6300 999

在线客服 点击咨询

投诉建议:0531-86557588